If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+5x^2-115=0
a = 5; b = 6; c = -115;
Δ = b2-4ac
Δ = 62-4·5·(-115)
Δ = 2336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2336}=\sqrt{16*146}=\sqrt{16}*\sqrt{146}=4\sqrt{146}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{146}}{2*5}=\frac{-6-4\sqrt{146}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{146}}{2*5}=\frac{-6+4\sqrt{146}}{10} $
| 3x+5×=2x+7 | | 3e=5 | | x9x=54 | | 9x-55+19=180 | | 37=2/3x | | a-15=4a-3a−15=4a−3a | | 7x+10=-21×-4 | | 39/41=x/18 | | 3(u+4)=6u+9 | | x^2+4x−49=4x | | 3941=x18 | | 5(4x−1)=3(2x+5) | | -12(4y-3)=36 | | x^2+.13x-(1.8*10^-14x)=0 | | 8-4s=s+138−4s=s+138 | | x^2+.13x-(1.8x10^-14)=0 | | 42x+21=x-23 | | -3x2+6x+4=0 | | (a+14)+(6a+4)=180 | | 5x=8x-15. | | 7x+10=21x-4 | | 21+3y=-6 | | 21+3y=–6 | | s^2+5s=-10 | | 8x+7×=75 | | 46-2x=24 | | (n-2)+7=6 | | 50-25x=25 | | 114-y=90 | | 50+2x+3x-10= | | 18+x+47=90 | | −2|x−4|+7=−3 |